HOME

Index of all articles, click here

Energy

In physics, energy (Ancient Greek: ?????e?a energeia "activity, operation"[1]) is an indirectly observed quantity. It is often understood as the ability a physical system has to do work on other physical systems.[2][3] Since work is defined as a force acting through a distance (a length of space), energy is always equivalent to the ability to exert pulls or pushes against the basic forces of nature, along a path of a certain length.

History

The concept of energy emerged out of the idea of vis viva (living force), which Gottfried Leibniz defined as the product of the mass of an object and its velocity squared; he believed that total vis viva was conserved. To account for slowing due to friction, Leibniz theorized that thermal energy consisted of the random motion of the constituent parts of matter, a view shared by Isaac Newton, although it would be more than a century until this was generally accepted. In 1807, Thomas Young was possibly the first to use the term "energy" instead of vis viva, in its modern sense.[5] Gustave-Gaspard Coriolis described "kinetic energy" in 1829 in its modern sense, and in 1853, William Rankine coined the term "potential energy". It was argued for some years whether energy was a substance (the caloric) or merely a physical quantity, such as momentum.

Energy in various contexts

The concept of energy and its transformations is useful in explaining and predicting most natural phenomena. The direction of transformations in energy (what kind of energy is transformed to what other kind) is often described by entropy (equal energy spread among all available degrees of freedom) considerations, as in practice all energy transformations are permitted on a small scale, but certain larger transformations are not permitted because it is statistically unlikely that energy or matter will randomly move into more concentrated forms or smaller spaces.

Distinction between energy and power

Although in everyday usage the terms energy and power are essentially synonyms, scientists and engineers distinguish between them. In its technical sense, power is not at all the same as energy, but is the rate at which energy is converted (or, equivalently, at which work is performed). Thus a hydroelectric plant, by allowing the water above the dam to pass through turbines, converts the water's potential energy into kinetic energy and ultimately into electric energy, whereas the amount of electric energy that is generated per unit of time is the electric power generated. The same amount of energy converted through a shorter period of time is more power over that shorter time.

Conservation of energy

Most kinds of energy (with gravitational energy being a notable exception)[10] are subject to strict local conservation laws as well. In this case, energy can only be exchanged between adjacent regions of space, and all observers agree as to the volumetric density of energy in any given space. There is also a global law of conservation of energy, stating that the total energy of the universe cannot change; this is a corollary of the local law, but not vice versa.[6][11] Conservation of energy is the mathematical consequence of translational symmetry of time (that is, the indistinguishability of time intervals taken at different time)[12] - see Noether's theorem.

Equipartition of energy

This principle is vitally important to understanding the behavior of a quantity closely related to energy, called entropy. Entropy is a measure of evenness of a distribution of energy between parts of a system. When an isolated system is given more degrees of freedom (i.e., given new available energy states that are the same as existing states), then total energy spreads over all available degrees equally without distinction between "new" and "old" degrees. This mathematical result is called the second law of thermodynamics.

Energy and life

Any living organism relies on an external source of energy—radiation from the Sun in the case of green plants; chemical energy in some form in the case of animals—to be able to grow and reproduce. The daily 1500–2000 Calories (6–8 MJ) recommended for a human adult are taken as a combination of oxygen and food molecules, the latter mostly carbohydrates and fats, of which glucose (C6H12O6) and stearin (C57H110O6) are convenient examples. The food molecules are oxidised to carbon dioxide and water in the mitochondria

Measurement

Because energy is defined as the ability to do work on objects, there is no absolute measure of energy. Only the transition of a system from one state into another can be defined and thus energy is measured in relative terms. The choice of a baseline or zero point is often arbitrary and can be made in whatever way is most convenient for a problem.

Units

Throughout the history of science, energy has been expressed in several different units such as ergs and calories. At present, the accepted unit of measurement for energy is the SI unit of energy, the joule. In addition to the joule, other units of energy include the kilowatt hour (kWh) and the British thermal unit (Btu). These are both larger units of energy. One kWh is equivalent to exactly 3.6 million joules, and one Btu is equivalent to about 1055 joules.

Energy density

For fuels, the energy per unit volume is sometimes a useful parameter. In a few applications, comparing, for example, the effectiveness of hydrogen fuel to gasoline it turns out that hydrogen has a higher specific energy than does gasoline, but, even in liquid form, a much lower energy density.

See also

. Index of energy articles
. Index of wave articles

Notes and references

1. Harper, Douglas. "Energy" . Online Etymology Dictionary. Retrieved May 1, 2007.
2. "Retrieved on 2010-Dec-05" . Faculty.clintoncc.suny.edu. Retrieved 2010-12-12.
3. "Retrieved on 2010-Dec-05" (PDF). Retrieved 2010-12-12.
4. Lofts, G; O'Keeffe D; et al. (2004). "11 — Mechanical Interactions". Jacaranda Physics 1 (2 ed.). Milton, Queensland, Australia: John Willey & Sons Australia Ltd.. p. 286. ISBN 0-7016-3777-3.
5. Smith, Crosbie (1998). The Science of Energy – a Cultural History of Energy Physics in Victorian Britain. The University of Chicago Press. ISBN 0-226-76420-6.
6. a b Feynman, Richard (1964). The Feynman Lectures on Physics; Volume 1. U.S.A: Addison Wesley. ISBN 0-201-02115-3.
7. "Retrieved on May-29-09" . Uic.edu. Retrieved 2010-12-12.


This article uses material from the Wikipedia article "Energy", which is released under the Creative Commons Attribution-Share-Alike License 3.0.